Home | Legals | Sitemap | KIT

STN Programme
Head: Prof. Dr. Horst Hahn / Prof. Dr. Jan G. Korvink

 

KIT-Campus North
Building 440

H.-von-Helmholtz-Platz 1
76344 Eggenstein-Leop.
Germany

phone: +49(721)608-25578
fax: +49(721)608-25579
e-mail: infoRru7∂stn kit edu

Links

Welcome to STN (Science and Technology of Nanosystems)

The Helmholtz Research Programme STN takes on the challenge of controlling and shaping materials from the atomic and molecular up to the macroscopic scale to explore their entire potential of novel functionalities.

STN is dedicated towards research and development of

Our activities span the entire range from fundamental science to high performance technologies and integrated systems. We closely cooperate with the Karlsruhe Nano Micro Facility (KNMF) as a large-scale user facility for multimaterial nano and micro technologies.

Willkommen bei STN (Science and Technology of Nanosystems)

Im Helmholtz-Programm STN wird das Potential neuartiger Funktionalitäten von Materialien auf der atomaren und molekularen bis zur makroskopischen Ebene erschlossen.

STN betreibt Forschung und Entwicklung in den Themenfeldern

Unsere Arbeiten reichen von der Grundlagenforschung bis zu Hochtechnologien und integrierten Systemen. Wir kooperieren eng mit der Karlsruhe Nano Micro Facility (KNMF) als Großgerät für Nutzer von Nano- und Mikrotechnologien und mit einer großen Vielfalt prozessierbarer Materialien.

 

NEWS

Carbon tube (center) as a photon source and superconducting nanowires as receivers constitute part of the optical chip (Photo: W.Pernice/WWU)
First Quantum Photonic Circuit with an Electrically Driven Light Source

September 27, 2016

Whether for use in safe data encryption, ultrafast calculation of huge data volumes or so-called quantum simulation of highly complex systems: Optical quantum computers are a source of hope for tomorrow’s computer technology. For the first time, scientists now have succeeded in placing a complete quantum optical structure on a chip, as outlined in the “Nature Photonics” journal. This fulfills one condition for the use of photonic circuits in optical quantum computers. (DOI: 10.1038/nphoton.2016.178)

Press Release 132/2016
Dreidimensionale Mikrogerüste für die Kultivierung einzelner Zellen (Aktinfärbung in grün), die durch photochemische Prozesse mit zwei unterschiedlichen Proteinen (rot, magenta) gezielt funktionalisiert wurden (Foto: Benjamin Richter/KIT).
Erwin-Schrödinger-Preis für "Designer-Petrischalen"

23. September 2016

(no English text available)

Der dreidimensionale Druck ist ein weltweiter Trend, der in immer mehr Anwendungsgebieten zum Einsatz kommt, etwa der Spielzeug- oder Automobilindustrie. Im Mikro- und Nanobereich könnte er vor allem bei der künstlichen Herstellung von biologischem Gewebe ("Tissue Engineering") neue Erkenntnisse bringen, etwa bei der Fertigung von 3-D-Designer-Petrischalen. Drei Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben eine Methode entwickelt, um flexible und dreidimensionale Mikrogerüste aufzubauen, in denen sie Zellkulturen in einem maßgeschneidertem Milieu züchten und erforschen können. Dafür erhalten sie den Erwin-Schrödinger-Preis der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Presseinformation 130/2016
 
Outer skin (left) and vascular bundles (right) of dragon tree branch-stem attachments in the loaded (yellow) and unloaded (red) state. (Photo: Hesse/University of Freiburg)
Deriving Inspiration from the Dragon Tree

September 8, 2016

Could dragon trees serve as a source of inspiration for innovations in lightweight construction? A team of researchers at the University of Freiburg and the Karlsruhe Institute of Technology (KIT) has laid the groundwork for designing technical fiber-reinforced lightweight ramifications modeled on branch–stem attachments. With the help of high-resolution magnetic resonance imaging techniques, the scientists succeeded in observing how the tissue of a living dragon tree is displaced when subjected to a load. In the future, technical fiber-reinforced lightweight ramifications with structures and behavior similar to that of the natural model could be used to improve architectural supporting structures, bicycle frames, or automobile bodies. The team published the findings in the journal Scientific Reports.

Press Release 124/2016
Thanks to fine hairs on the leaf surface, the salvinia water fern can absorb and bind mineral oil from water surfaces. (Photo: C. Zeiger/KIT)
Nanofur for Oil Spill Cleanup

August 18, 2016

Some water ferns can absorb large volumes of oil within a short time, because their leaves are strongly water-repellent and, at the same time, highly oil-absorbing. Researchers of KIT, together with colleagues of Bonn University, have found that the oil-binding capacity of the water plant results from the hairy microstructure of its leaves. It is now used as a model to further develop the new Nanofur material for the environmentally friendly cleanup of oil spills. (DOI: 10.1088/1748-3190/11/5/056003)

Press Release 115/2016
 
The mechanical properties of the carbon nanotube (black) cause the spin (orange) of a molecule (green and red) to flip over. (Illustration: Christian Grupe/KIT)
What Makes the Spin Flip Over?

June 2, 2016

The Einstein-de-Haas effect shows that magnetism results from the angular momentum of electrons and is considered as the macroscopic evidence of electron spin. Researchers at Karlsruhe Institute of Technology (KIT) and at the Institut NÉEL at the CNRS in Grenoble were the first to investigate this effect for an individual spin and formulated it as the new “Quantum Einstein-de-Haas effect”. In the Nature Communications scientific journal (DOI: 10.1038/ncomms11443), they report on their work.

Press Release 083/2016
Wolfgang Wernsdorfer. (Photo: Humboldt-Stiftung/Wolfgang Hemmann)
KIT Brings Outstanding Experimental Physicist Back to Germany

May 4, 2016

Germany’s award in the highest amount for researchers from abroad was handed over to Professor Wolfgang Wernsdorfer yesterday evening (May 03) in Berlin. The pioneer of molecular spin electronics will now return from France to Germany: From June 01, 2016, Wernsdorfer will continue his research for the development of future quantum computers at Karlsruhe Institute of Technology (KIT). The research award in the amount of EUR 5 million was handed over by the State Secretary of the Federal Ministry of Education and Research, Cornelia Quennet-Thielen, and the President of the Alexander von Humboldt Foundation, Professor Helmut Schwarz.

Press Release 070/2016
 
Carbon nanotube above a photonic crystal waveguide with electrodes. The structure converts electric signals into light. (Photo: WWU)
Nature Photonics: Light Source for Quicker Computer Chips

April 19, 2016

Worldwide growing data volumes make conventional electronic processing reach its limits. Future information technology is therefore expected to use light as a medium for quick data transmission also within computer chips. Researchers under the direction of KIT have now demonstrated that carbon nanotubes are suited for use as on-chip light source for tomorrow’s information technology, when nanostructured waveguides are applied to obtain the desired light properties. The scientists now present their results in Nature Photonics. DOI: 10.1038/NPHOTON. 2016.70

Press Release 059/2016
Organic laser on a silicon photonic chip: Optical excitation from above generates laser light in the waveguide. (Graphics: KIT)
Nature Communications: Laser Source for Biosensors

March 7, 2016

In the area of nano photonics, scientists for the first time succeeded in integrating a laser with an organic gain medium on a silicon photonic chip. This approach is of enormous potential for low-cost biosensors that might be used for near-patient diagnosis once and without any sterilization expenditure similar to today’s strips for measuring blood sugar. The researchers now present the new laser in Nature Communications: DOI: 10.1038/ncomms10864

Press Release 034/2016