Home | Legals | Sitemap | KIT

STN Programme
Head: Prof. Dr. Horst Hahn / Prof. Dr. Jan G. Korvink


KIT-Campus North
Building 440

H.-von-Helmholtz-Platz 1
76344 Eggenstein-Leop.

phone: +49(721)608-25578
fax: +49(721)608-25579
e-mail: infoUel9∂stn kit edu

18th KNMF Call for Proposals


Deadline: June 30, 2017

KNMF LogoThe Karlsruhe Nano Micro Facility (KNMF ) is focused on providing users from industry and academia, either national or international, open access to multimaterial state-of-the-art micro- and nanotechnologies.

Submit your proposal and benefit from our expertise!



Welcome to STN (Science and Technology of Nanosystems)

The Helmholtz Research Programme STN takes on the challenge of controlling and shaping materials from the atomic and molecular up to the macroscopic scale to explore their entire potential of novel functionalities.

STN is dedicated towards research and development of

Our activities span the entire range from fundamental science to high performance technologies and integrated systems. We closely cooperate with the Karlsruhe Nano Micro Facility (KNMF) as a large-scale user facility for multimaterial nano and micro technologies.

Willkommen bei STN (Science and Technology of Nanosystems)

Im Helmholtz-Programm STN wird das Potential neuartiger Funktionalitäten von Materialien auf der atomaren und molekularen bis zur makroskopischen Ebene erschlossen.

STN betreibt Forschung und Entwicklung in den Themenfeldern

Unsere Arbeiten reichen von der Grundlagenforschung bis zu Hochtechnologien und integrierten Systemen. Wir kooperieren eng mit der Karlsruhe Nano Micro Facility (KNMF) als Großgerät für Nutzer von Nano- und Mikrotechnologien und mit einer großen Vielfalt prozessierbarer Materialien.



Die blaue Vogelspinne (Poecilotheria metallica) inspirierte Forscher zur Herstellung nicht irisierender struktureller Farben. (Foto: Tom Patterson)
Kleiden wie ein Pfau: Lebhafte Farben durch Nanotechnologie

19. Oktober 2016

(English text not yet available)

Farben werden auf unterschiedliche Arten erzeugt: Die bekannteste sind Farbpigmente. Die besonders lebhaften Farben der blauen Vogelspinne oder auch auf Pfauenfedern entstehen aber nicht durch Pigmente, sondern durch Nanostrukturen, durch die sich Lichtwellen bei der Reflexion überlagern. Dabei entstehen außergewöhnlich dynamische Farbeffekte. Wissenschaftlern unter Beteiligung des Karlsruher Instituts für Technologie (KIT) ist es nun gelungen, solche Nanostrukturen nachzubilden, die unabhängig vom Blickwinkel dieselbe Farbe erzeugen. DOI: 10.1002/adom.201600599

Presseinformation 144/2016
Carbon tube (center) as a photon source and superconducting nanowires as receivers constitute part of the optical chip (Photo: W.Pernice/WWU)
First Quantum Photonic Circuit with an Electrically Driven Light Source

September 27, 2016

Whether for use in safe data encryption, ultrafast calculation of huge data volumes or so-called quantum simulation of highly complex systems: Optical quantum computers are a source of hope for tomorrow’s computer technology. For the first time, scientists now have succeeded in placing a complete quantum optical structure on a chip, as outlined in the “Nature Photonics” journal. This fulfills one condition for the use of photonic circuits in optical quantum computers. (DOI: 10.1038/nphoton.2016.178)

Press Release 132/2016
Three-dimensional microscaffolds for the cultivation of individual cells (actin colored green), which were functionalized specifically with two different proteins (red, magenta) by photochemical processes. (Photo: Benjamin Richter/KIT)
Specifically Designed Petri Dishes: Three KIT Scientists Receive Erwin Schrödinger Prize

September 23, 2016

Three-dimensional printing is increasingly applied worldwide, like in toy and automotive industries. In micro- and nanoranges, use of the process for the artificial production of biological tissue (tissue engineering) might result in new findings, as it is the case for specifically designed 3D petri dishes. Three scientists of Karlsruhe Institute of Technology (KIT) developed a method to produce flexible, three-dimensional microscaffolds for cultivating cells under suitable conditions and to conduct corresponding research. For this, they are now granted the Erwin Schrödinger Prize by the Helmholtz Association of German Research Centers.

Press Release 130/2016
Outer skin (left) and vascular bundles (right) of dragon tree branch-stem attachments in the loaded (yellow) and unloaded (red) state. (Photo: Hesse/University of Freiburg)
Deriving Inspiration from the Dragon Tree

September 8, 2016

Could dragon trees serve as a source of inspiration for innovations in lightweight construction? A team of researchers at the University of Freiburg and the Karlsruhe Institute of Technology (KIT) has laid the groundwork for designing technical fiber-reinforced lightweight ramifications modeled on branch–stem attachments. With the help of high-resolution magnetic resonance imaging techniques, the scientists succeeded in observing how the tissue of a living dragon tree is displaced when subjected to a load. In the future, technical fiber-reinforced lightweight ramifications with structures and behavior similar to that of the natural model could be used to improve architectural supporting structures, bicycle frames, or automobile bodies. The team published the findings in the journal Scientific Reports.

Press Release 124/2016
Thanks to fine hairs on the leaf surface, the salvinia water fern can absorb and bind mineral oil from water surfaces. (Photo: C. Zeiger/KIT)
Nanofur for Oil Spill Cleanup

August 18, 2016

Some water ferns can absorb large volumes of oil within a short time, because their leaves are strongly water-repellent and, at the same time, highly oil-absorbing. Researchers of KIT, together with colleagues of Bonn University, have found that the oil-binding capacity of the water plant results from the hairy microstructure of its leaves. It is now used as a model to further develop the new Nanofur material for the environmentally friendly cleanup of oil spills. (DOI: 10.1088/1748-3190/11/5/056003)

Press Release 115/2016