Home | Legals | Data Protection | Sitemap | KIT

STN Programme
Head: Prof. Dr. Horst Hahn / Prof. Dr. Jan G. Korvink


KIT-Campus North
Building 440

H.-von-Helmholtz-Platz 1
76344 Eggenstein-Leop.

phone: +49(721)608-25578
fax: +49(721)608-25579
e-mail: infoEao1∂stn kit edu



The Helmholtz Research Programme STN (Science and Technology of Nanosystems) takes on the challenge of controlling and shaping materials from the atomic and molecular up to the macroscopic scale to explore their entire potential of novel functionalities.

STN is dedicated towards research and development of

Our activities span the entire range from fundamental science to high performance technologies and integrated systems. We closely cooperate with the Karlsruhe Nano Micro Facility (KNMF) as a large-scale user facility for multimaterial nano and micro technologies.


Im Helmholtz-Programm STN (Science and Technology of Nanosystems) wird das Potential neuartiger Funktionalitäten von Materialien auf der atomaren und molekularen bis zur makroskopischen Ebene erschlossen.

STN betreibt Forschung und Entwicklung in den Themenfeldern

Unsere Arbeiten reichen von der Grundlagenforschung bis zu Hochtechnologien und integrierten Systemen. Wir kooperieren eng mit der Karlsruhe Nano Micro Facility (KNMF) als Großgerät für Nutzer von Nano- und Mikrotechnologien und mit einer großen Vielfalt prozessierbarer Materialien.

Highlights and news archive


Team 2017 (Picture: KIT)



Bundespräsident Frank-Walter Steinmeier verleiht Britta Nestler vom KIT den Bundesverdienstorden. (Bild: Bundesregierung / Gero Breloer)
[DE] Bundesverdienstorden für Britta Nestler

October 02, 2019

„Mut zur Zukunft: Grenzen überwinden“ – unter diesem Motto zeichnete Bundespräsident Frank-Walter Steinmeier heute anlässlich des morgigen Tags der Deutschen Einheit 25 Bürgerinnen und Bürger mit dem Verdienstorden der Bundesrepublik Deutschland aus. Darunter Professorin Britta Nestler, die sowohl am Karlsruher Institut für Technologie (KIT) als auch an der Hochschule Karlsruhe forscht und lehrt. Ausgezeichnet wurde sie für ihre wissenschaftlichen Verdienste, vor allem für ihre Vorreiterrolle in der Verbindung von Grundlagen- und anwendungsorientierter Forschung.

Press Release 128/2019
Award ceremony of the Erwin Schrödinger Prize to the multidisciplinary team of KIT at the annual meeting of the Helmholtz Association. (Photo: Marco Urban)
The perfect solar cell: How ferroelectricity improves power harvesting in perovskite solar cells

September 20, 2019

Within a few years only, methylammonium lead iodide (MAPbI3), and later more advanced organic metal halide perovskites, has performed an unprecedented rally towards highest power conversion efficiencies of more than 25% rivalling other solar cell technologies such as the ‘old bull’ silicon photovoltaics. A multi-disciplinary team of six scientists from electrical engineering, material science and physics at Karlsruhe Institute of Technology (KIT) has found evidence for ferroelectric domains in MAPbI3 thin-films. These ferroelectric microstructures can explain the extraordinary photovoltaic performance of modern perovskite solar cells. For their cutting-edge research, the team was awarded the Erwin-Schrödinger-Prize of the Helmholz Association an the Helmholtz Foundation.

Press Release 121/2019
The researchers engaged in the Capitano project are developing new materials, processes and prototypes for highly efficient perovskite solar cells and modules. (Photo: Markus Breig, KIT)
Tandem Solar Modules: One-Two Combination Packs a More Powerful Punch

September 02, 2019

The efficiency ceiling of commercially available solar modules leaves little room for improvement. Tandem solar modules with two light-harvesting active layers have far greater potential. The future could well belong to this promising technology. Research-ers engaged in the Capitano project are combining thin-film solar modules based on perovskite semiconductors with semiconduc-tors made of copper, indium, gallium and selenium (CIGS). This combination is the key to building remarkably efficient tandem solar cells with all the advantages of thin-film technology and an efficiency factor that could top the 30-percent mark. The Karlsruhe Institute of Technology (KIT), the Schwäbisch Hall-based enterprise NICE Solar Energy, and the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) have joined forces in this project with the ZSW acting as coordinator.

Press Release 111/2019
Transparent, electrically conductive, and selective to one type of charge carriers: these are the properties of hole transport layers for Perovskite solar cells. (Photo: Tobias Abzieher, KIT)
Highly Efficient Solar Cells Thanks to Solid Foundation

July 17, 2019

The sun is an inexhaustible and sustainable source of energy. Hence, photovoltaics is gaining importance in German energy production. Among promising materials for solar cells – with a high efficiency and low production costs – are metal-organic Perovskites. Researchers of Karlsruhe Institute of Technology (KIT) have developed a novel type of highly efficient nickel oxide hole transport layer that can be deposited on large areas and reaches record efficiencies in these solar cells.

Press Release 097/2019
Seamless integration of wireless transmission lines into glass-fiber networks results in high-performance data networks. A detailed description of the figure is given at the end of the text. (Graphics: IPQ/KIT)
Technologies for the Sixth Generation Cellular Network

July 16, 2019

Future wireless data networks will have to reach higher transmission rates and shorter delays, while supplying an increasing number of end devices. For this purpose, network structures consisting of many small radio cells will be required. To connect these cells, high-performance transmission lines at high frequencies up to the terahertz range will be needed. Moreover, seamless connection to glass fiber networks must be ensured, if possible. Researchers of Karlsruhe Institute of Technology (KIT) use ultra-rapid electro-optical modulators to convert terahertz data signals into optical signals. This is reported in Nature Photonics (DOI: 10.1038/s41566-019-0475-6).

Press Release 095/2019
Carbon dioxide (red-black) and hydrogen (gray) catalytically react to graphene (black) on copper-palladium surfaces. (Picture: E. Moreno-Pineda, KIT)
Producing Graphene from Carbon Dioxide

July 08, 2019

The general public knows the chemical compound of carbon dioxide as a greenhouse gas in the atmosphere and because of its global-warming effect. However, carbon dioxide can also be a useful raw material for chemical reactions. A working group at Karlsruhe Institute of Technology (KIT) has now reported on this unusual application in the ChemSusChem journal. They are using carbon dioxide as a raw material to produce graphene, a technological material which is currently the subject of intense study. (DOI: 10.1002/cssc.201901404)

Press Release 090/2019